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1 Introduction
1.1 Swubsection 1

Bla...

1.2 Subsection 2
Blupp...

2 This is the long form of a chapter title, which is
to long for the headings

3 Examples for citations

As in [FRW], [RW06] and [HROT7]...

4 Other examples
4.1 Equations
Without numbers:

Co(|AP + 1),
CsAl.

IA A

With numbers:

ut(z,t) — divS(Vu(z,t) = 0,
u(t=0) = wup. (1)

See (1)...

4.2 Definitions, theorems etc.

Definition 4.1 (Young measure solutions). We call a pair (u,v) a Young mea-
sure solution of system (1) if:

e u € HYG x (0,T)) N L*((0,T), H}(Q)), and v = (vz4) is a family of
probability measures.

o (Id,vy:) = Vu(x,t) for a.e. (z,t) € G x (0,T).
e For all ¢ € HYG x (0,T)) we have:
T
/ / (p,V)V( 4+ wCdxdt = 0.
0 G

With this definition in hands we can state the following theorem:



Theorem 4.2 (Young measure solutions for parabolic equations). Let G C R"
be a bounded domain with smooth boundary, and assume the regularity and
growth conditions for ¢ and S stated above. Moreover assume that ug € Hol(G),
then there exists a Young measure solution (u,v) to the problem (1).

You can quote the Theorem 4.2.

4.3 Figures
See Fig.1.
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Figure 1: The function ¢(Y') := dist(Y, {4, B})? with A = {—1} and B = {+1}.
— The cusp in Y = 0 does not lead to a lack of differentiability for ¢9%¢.

4.4 Items
One possibility is:
(i) g% = ¢,
(i) &7 = 6"
4.5 Arrays and tables

Here an easy example for an array:

37t
S—sin(2nt), t<2
L4 — 5 sin( , t<2,
u(l,1) { 0, t>2,
u(0,t) = 0.
And a table:
‘ Description dx h

Experiment A | Two-well potential, initially two peaks 0.02 0.02
Experiment B | Sine on the boundary, stopping 0.02 0.02
Experiment C | Small sine on the boundary, stopping  0.05 0.05
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Please look in the references...
The BibTeX-file looks as follows:
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