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1 Introduction

1.1 Subsection 1

Bla...

1.2 Subsection 2

Blupp...

2 This is the long form of a chapter title, which is

to long for the headings

3 Examples for citations

As in [FRW], [RW06] and [HR07]...

4 Other examples

4.1 Equations

Without numbers:

C1(|A|2 − 1) ≤ |φ(A)| ≤ C2(|A|2 + 1),

|S(A)| ≤ C3|A|.

With numbers:

ut(x, t) − divS(∇u(x, t) = 0,

u(t = 0) = u0. (1)

See (1)...

4.2 Definitions, theorems etc.

Definition 4.1 (Young measure solutions). We call a pair (u, ν) a Young mea-
sure solution of system (1) if:

• u ∈ H1

0
(G × (0, T )) ∩ L∞((0, T ),H1

0
(G)), and ν := (νx,t) is a family of

probability measures.

• 〈Id, νx,t〉 = ∇u(x, t) for a.e. (x, t) ∈ G × (0, T ).

• For all ζ ∈ H1

0
(G × (0, T )) we have:

∫ T

0

∫

G

〈φ, ν〉∇ζ + utζ dx dt = 0.

With this definition in hands we can state the following theorem:
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Theorem 4.2 (Young measure solutions for parabolic equations). Let G ⊂ R
n

be a bounded domain with smooth boundary, and assume the regularity and
growth conditions for φ and S stated above. Moreover assume that u0 ∈ H1

0
(G),

then there exists a Young measure solution (u, ν) to the problem (1).

You can quote the Theorem 4.2.

4.3 Figures

See Fig.1.
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Figure 1: The function φ(Y ) := dist(Y, {A,B})2 with A = {−1} and B = {+1}.
– The cusp in Y = 0 does not lead to a lack of differentiability for φqc.

4.4 Items

One possibility is:

(i) φqc = φ∗∗,

(ii) φrc = φ∗∗.

4.5 Arrays and tables

Here an easy example for an array:

u(1, t) =

{

3
−t

2
sin(2πt), t ≤ 2,

0, t > 2,

u(0, t) = 0.

And a table:

Description dx h

Experiment A Two-well potential, initially two peaks 0.02 0.02
Experiment B Sine on the boundary, stopping 0.02 0.02
Experiment C Small sine on the boundary, stopping 0.05 0.05
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A BibTex

Please look in the references...
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